Random variables, trees, and branching random walks
نویسندگان
چکیده
منابع مشابه
Anisotropic Branching Random Walks on Homogeneous Trees
Symmetric branching random walk on a homogeneous tree exhibits a weak survival phase: For parameter values in a certain interval, the population survives forever with positive probability, but, with probability one, eventually vacates every finite subset of the tree. In this phase, particle trails must converge to the geometric boundary of the tree. The random subset 3 of the boundary consisti...
متن کاملBranching Random Walks
We study a generalized branching random walk where particles breed at a rate which depends on the number of neighbouring particles. Under general assumptions on the breeding rates we prove the existence of a phase where the population survives without exploding. We construct a non trivial invariant measure for this case.
متن کاملBranching random walks and contact processes on Galton-Watson trees
We consider branching random walks and contact processes on infinite, connected, locally finite graphs whose reproduction and infectivity rates across edges are inversely proportional to vertex degree. We show that when the ambient graph is a Galton-Watson tree then, in certain circumstances, the branching random walks and contact processes will have weak survival phases. We also provide bounds...
متن کاملRandom Walks and Trees
These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1973
ISSN: 0001-8708
DOI: 10.1016/0001-8708(73)90123-0